BACKGROUND. [18F]FluorThanatrace ([18F]FTT) is a radiolabeled poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi) that enables noninvasive quantification of PARP with potential to serve as a biomarker for patient selection for PARPi therapy. Here we report for the first time to our knowledge noninvasive in vivo visualization of drug-target engagement during PARPi treatment. METHODS. Two single-arm, prospective, nonrandomized clinical trials were conducted at the University of Pennsylvania from May 2017 to March 2020. PARP expression in breast cancer was assessed in vivo via [18F]FTT PET before and after initiation of PARPi treatment and in vitro via [125I] KX1 (an analog of [18F]FTT) binding to surgically removed breast cancer. RESULTS. Thirteen patients had baseline [18F]FTT PET. Nine of these then had resection and in vitro evaluation of [18F]FTT uptake with an analog and uptake was blocked with PARPi. Of the other 4 patients, 3 had [18F]FTT PET uptake, and all had uptake blocked with treatment with a therapeutic PARPi. Initial in vivo [18F]FTT tumor uptake ranged from undetectable to robust. Following initiation of PARPi therapy, [18F]FTT uptake was not detectable above background in all cases. In vitro tumor treatment with a PARPi resulted in 82% reduction in [125I]KX1 binding. CONCLUSION. [18F]FTT noninvasively quantifies PARP-1 expression. Early results indicate ability to visualize PARPi drug-target engagement in vivo and suggest the utility of further study to test [18F] FTT PET as a predictive and pharmacodynamic biomarker.
CITATION STYLE
McDonald, E. S., Pantel, A. R., Shah, P. D., Farwell, M. D., Clark, A. S., Doot, R. K., … Carlin, S. D. (2021). In vivo visualization of PARP inhibitor pharmacodynamics. JCI Insight, 6(8). https://doi.org/10.1172/jci.insight.146592
Mendeley helps you to discover research relevant for your work.