Multiple evidence of positive relationships between nice breadth and range size (NB–RS) suggested that this can be a general ecological pattern. However, correlations between niche breadth and range size can emerge as a by-product of strong spatial structure of environmental variables. This can be problematic because niche breadth is often assessed using broad-scale macroclimatic variables, which suffer heavy spatial autocorrelation. Microhabitat measurements provide accurate information on species tolerance, and show limited autocorrelation. The aim of this study was to combine macroclimate and microhabitat data to assess NB–RS relationships in European plethodontid salamanders (Hydromantes), and to test whether microhabitat variables with weak autocorrelation can provide less biased NB–RS estimates across species. To measure macroclimatic niche, we gathered comprehensive information on the distribution of all Hydromantes species, and combined them with broad-scale climatic layers. To measure microhabitat, we recorded salamander occurrence across > 350 caves and measured microhabitat features influencing their distribution: humidity, temperature and light. We assessed NB–RS relationships through phylogenetic regression; spatial null-models were used to test whether the observed relationships are a by-product of autocorrelation. We observed positive relationships between niche breadth and range size at both the macro- and microhabitat scale. At the macroclimatic scale, strong autocorrelation heavily inflated the possibility to observe positive NB–RS. Spatial autocorrelation was weaker for microhabitat variables. At the microhabitat level, the observed NB–RS was not a by-product of spatial structure of variables. Our study shows that heavy autocorrelation of variables artificially increases the possibility to detect positive relationships between bioclimatic niche and range size, while fine-scale data of microhabitat provide more direct measure of conditions selected by ectotherms, and enable less biased measures of niche breadth. Combining analyses performed at multiple scales and datasets with different spatial structure provides more complete niche information and effectively tests the generality of niche breadth–range size relationships.
CITATION STYLE
Ficetola, G. F., Lunghi, E., & Manenti, R. (2020). Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography, 43(5), 724–734. https://doi.org/10.1111/ecog.04798
Mendeley helps you to discover research relevant for your work.