Coupling quantum emitters and nanostructures, in particular cold atoms and optical waveguides, has recently raised a large interest due to unprecedented possibilities of engineering light-matter interactions. In this work, we propose a new type of periodic dielectric waveguide that provides strong interactions between atoms and guided photons with an unusual dispersion. We design an asymmetric comb waveguide that supports a slow mode with a quartic (instead of quadratic) dispersion and an electric field that extends far into the air cladding for an optimal interaction with atoms. We compute the optical trapping potential formed with two guided modes at frequencies detuned from the atomic transition. We show that cold Rubidium atoms can be trapped as close as 100 nm from the structure in a 1.3-mK-deep potential well. For atoms trapped at this position, the emission into guided photons is largely favored, with a beta factor as high as 0.88 and a radiative decay rate into the slow mode 10 times larger than the free-space decay rate. These figures of merit are obtained at a moderately low group velocity of c /50.
CITATION STYLE
Fayard, N., Bouscal, A., Berroir, J., Urvoy, A., Ray, T., Mahapatra, S., … Sauvan, C. (2022). Asymmetric comb waveguide for strong interactions between atoms and light. Optics Express, 30(25), 45093. https://doi.org/10.1364/oe.475162
Mendeley helps you to discover research relevant for your work.