Natural products and conventional chemotherapeutic drugs are believed to enhance anticancer treatment efficacy while lowering toxicity. The current study investigates the cytotoxic and apoptogenic effects of Monotheca buxifolia bioactive compounds on HepG2 cell lines. MTT assay was used to assess the effect on the viability of HepG2 cells. Morphological changes were investigated. Annexin-V-FITC/PI was used to demonstrate apoptotic activity. A molecular dynamics simulation study was carried out to investigate the compound binding pattern in the active site of the PPRAδ protein. MTT and annexin V-FITC/PI assays revealed that the isolated compounds lauric acid, oleanolic acid, and bis(2-ethylhexyl) phthalate inhibited the growth of hepatocellular cancer cells. The IC50 value for lauric acid was 56.46 ± 1.20 μg/mL, 31.94 ± 1.03 μg/mL for oleanolic acid, and 83.80 ± 2.18 μg/mL for bis(2-ethylhexyl) phthalate. Apoptosis was observed in 29.5, 52.1 and 22.4% of HepG2 cells treated with lauric acid, oleanolic acid, and bis(2-ethylhexyl) phthalate, respectively, after 24 h of treatment. Morphological assays and Hoechst staining microscopy revealed that the treatment caused morphological changes in the cell membrane and nuclear condensation. The high fluctuation indicates that various interactions were highly potent and widely adopted, and vice versa. Oleanolic acid displayed high residue fluctuation, remaining stable in the active site of the PPRAδ protein and involved in various interactions while remaining locally fluctuating in the binding sites of the other two compounds. These findings concluded that lauric acid, oleanolic acid, and bis(2-ethylhexyl) phthalate have a significant apoptogenic effect against HepG2 cells in inducing apoptosis. Our findings suggest that these bioactive compounds could be used as adjuvant therapies.
CITATION STYLE
Hassan, S., Ahmad, B., Khan, M. W., Shah, Z. A., Ullah, A., Ullah, S., … Yilmaz, S. (2023). Cytotoxic Activity of Phytoconstituents Isolated from Monotheca buxifolia against Hepatocellular Carcinoma Cell Line HepG2: In Vitro and Molecular Docking Studies. ACS Omega, 8(37), 33572–33579. https://doi.org/10.1021/acsomega.3c03705
Mendeley helps you to discover research relevant for your work.