Summary: GenMiner is an implementation of association rule discovery dedicated to the analysis of genomic data. It allows the analysis of datasets integrating multiple sources of biological data represented as both discrete values, such as gene annotations, and continuous values, such as gene expression measures. GenMiner implements the new NorDi (normal discretization) algorithm for normalizing and discretizing continuous values and takes advantage of the Close algorithm to efficiently generate minimal non-redundant association rules. Experiments show that execution time and memory usage of GenMiner are significantly smaller than those of the standard Apriori-based approach, as well as the number of extracted association rules. © The Author 2008. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Martinez, R., Pasquier, N., & Pasquier, C. (2008). GenMiner: Mining non-redundant association rules from integrated gene expression data and annotations. Bioinformatics, 24(22), 2643–2644. https://doi.org/10.1093/bioinformatics/btn490
Mendeley helps you to discover research relevant for your work.