We report new observations of the prototype main-belt comet (active asteroid) 133P/Elst-Pizarro taken at high angular resolution using the Hubble Space Telescope. The object has three main components: (1) a point-like nucleus; (2) a long, narrow antisolar dust tail; and (3) a short, sunward anti-tail. There is no resolved coma. The nucleus has a mean absolute magnitude H V = 15.70 ± 0.10 and a light curve range ΔV = 0.42 mag, the latter corresponding to projected dimensions 3.6 × 5.4 km (axis ratio 1.5:1) at the previously measured geometric albedo of 0.05 ± 0.02. We explored a range of continuous and impulsive emission models to simultaneously fit the measured surface brightness profile, width, and position angle of the antisolar tail. Preferred fits invoke protracted emission, over a period of 150 days or less, of dust grains following a differential power-law size distribution with index 3.25 ≤q ≤ 3.5 and with a wide range of sizes. Ultra-low surface brightness dust projected in the sunward direction is a remnant from emission activity occurring in previous orbits, and consists of the largest (≥cm-sized) particles. Ejection velocities of one-micron-sized particles are comparable to the ∼1.8 m s-1 gravitational escape speed of the nucleus, while larger particles are released at speeds less than the gravitational escape velocity. The observations are consistent with, but do not prove, a hybrid hypothesis in which mass loss is driven by gas drag from the sublimation of near-surface water ice, but escape is aided by centripetal acceleration from the rotation of the elongated nucleus. No plausible alternative hypothesis has been identified. © 2014. The American Astronomical Society. All rights reserved.
CITATION STYLE
Jewitt, D., Ishiguro, M., Weaver, H., Agarwal, J., Mutchler, M., & Larson, S. (2014). Hubble space telescope investigation of main-belt comet 133P/elst-pizarro. Astronomical Journal, 147(5). https://doi.org/10.1088/0004-6256/147/5/117
Mendeley helps you to discover research relevant for your work.