The heat resistance of lactic acid bacteria (LAB) has been extensively investigated due to its highly practical significance. Reconstituted skim milk (RSM) has been found to be one of the most effective protectant wall materials for microencapsulating microorganisms during convective drying, such as spray drying. In addition to proteins and carbohydrate, RSM is rich in calcium. It is not clear which component is critical in the RSM protection mechanism. This study investigated the independent effect of calcium. Ca2+ was added to lactose solution to examine its influence on the heat resistance of Lactobacillus rhamnosus ZY, Lactobacillus casei Zhang, Lactobacillus plantarum P8 and Streptococcus thermophilus ND03. The results showed that certain Ca2+ concentrations enhanced the heat resistance of the LAB strains to different extents, that is produced higher survival and shorter regrowth lag times of the bacterial cells. In some cases, the improvements were dramatic. More scientifically insightful and more intensive instrumental study of the Ca2+ behavior around and in the cells should be carried out in the near future. In the meantime, this work may lead to the development of more cost-effective wall materials with Ca2+ added as a prime factor. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd.
CITATION STYLE
Huang, S., & Chen, X. D. (2013, July). Significant effect of Ca2+ on improving the heat resistance of lactic acid bacteria. FEMS Microbiology Letters. https://doi.org/10.1111/1574-6968.12151
Mendeley helps you to discover research relevant for your work.