Calibration and XGBoost reweighting to reduce coverage and non-response biases in overlapping panel surveys: application to the Healthcare and Social Survey

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Surveys have been used worldwide to provide information on the COVID-19 pandemic impact so as to prepare and deliver an effective Public Health response. Overlapping panel surveys allow longitudinal estimates and more accurate cross-sectional estimates to be obtained thanks to the larger sample size. However, the problem of non-response is particularly aggravated in the case of panel surveys due to population fatigue with repeated surveys. Objective: To develop a new reweighting method for overlapping panel surveys affected by non-response. Methods: We chose the Healthcare and Social Survey which has an overlapping panel survey design with measurements throughout 2020 and 2021, and random samplings stratified by province and degree of urbanization. Each measurement comprises two samples: a longitudinal sample taken from previous measurements and a new sample taken at each measurement. Results: Our reweighting methodological approach is the result of a two-step process: the original sampling design weights are corrected by modelling non-response with respect to the longitudinal sample obtained in a previous measurement using machine learning techniques, followed by calibration using the auxiliary information available at the population level. It is applied to the estimation of totals, proportions, ratios, and differences between measurements, and to gender gaps in the variable of self-perceived general health. Conclusion: The proposed method produces suitable estimators for both cross-sectional and longitudinal samples. For addressing future health crises such as COVID-19, it is therefore necessary to reduce potential coverage and non-response biases in surveys by means of utilizing reweighting techniques as proposed in this study.

Cite

CITATION STYLE

APA

Castro, L., Rueda, M. del M., Sánchez-Cantalejo, C., Ferri, R., & Cabrera-León, A. (2024). Calibration and XGBoost reweighting to reduce coverage and non-response biases in overlapping panel surveys: application to the Healthcare and Social Survey. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02171-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free