Nicotinamide adenine dinucleotide (NAD+) is a key redox compound in all living cells responsible for energy transduction, genomic integrity, life-span extension, and neuromodulation. Here, we report a new function of NAD+ as a molecular photocatalyst in addition to the biological roles. Our spectroscopic and electrochemical analyses reveal light absorption and electronic properties of two p-conjugated systems of NAD+. Furthermore, NAD+ exhibits a robust photostability under UV-Vis-NIR irradiation. We demonstrate photocatalytic redox reactions driven by NAD+, such as O2 reduction, H2O oxidation, and the formation of metallic nanoparticles. Beyond the traditional role of NAD+ as a cofactor in redox biocatalysis, NAD+ executes direct photoactivation of oxidoreductases through the reduction of enzyme prosthetic groups. Consequently, the synergetic integration of biocatalysis and photocatalysis using NAD+ enables solar-to-chemical conversion with the highest-ever-recorded turnover frequency and total turnover number of 1263.4 hour−1 and 1692.3, respectively, for light-driven biocatalytic trans-hydrogenation.
CITATION STYLE
Kim, J., Lee, S. H., Tieves, F., Paul, C. E., Hollmann, F., & Park, C. B. (2019). Nicotinamide adenine dinucleotide as a photocatalyst. Science Advances, 5(7). https://doi.org/10.1126/sciadv.aax0501
Mendeley helps you to discover research relevant for your work.