Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis

38Citations
Citations of this article
117Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Biofuels production from lignocellulosic biomass is hindered by high conversion costs in the generation of high-quality fuels, driving research towards the development of new pathways with less severe conditions, higher yields and higher-quality products. Here, we present a market-responsive biorefinery concept based on methanol as the key intermediate, which generates high-octane gasoline (HOG) and jet fuel blendstocks from biomass. Process models and techno-economic analysis are linked with both fundamental and applied catalyst development research to quantify the impact of catalyst advancements on process economics. By facilitating reincorporation of C4 by-products during dimethyl ether homologation, a Cu-modified beta zeolite catalyst enabled a 38% increase in yield of the HOG product and a 35% reduction in conversion cost compared to the benchmark beta zeolite catalyst. Alternatively, C4 by-products were directed to a synthetic kerosene that met five specifications for a typical jet fuel, with a minor increase in the fuel synthesis cost versus the HOG-only case.

Cite

CITATION STYLE

APA

Ruddy, D. A., Hensley, J. E., Nash, C. P., Tan, E. C. D., Christensen, E., Farberow, C. A., … Schaidle, J. A. (2019). Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nature Catalysis, 2(7), 632–640. https://doi.org/10.1038/s41929-019-0319-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free