Tuberculosis (TB), as a common infectious disease, still remains a severe challenge to public health. Due to the unsatisfied clinical needs of currently available diagnostic vehicles, it is desired to establish a new approach for universally detecting Mycobacterium tuberculosis. Herein, we designed a real-time recombinase polymerase amplification (RPA) technology for identifying M. tuberculosis within 20 min at 39°C via custom-designed oligonucleotide primers and probe, which could specifically target antigen 85B (Ag85B). Particularly, the primers F4-R4 produced the fastest fluorescence signal with the probe among four pairs of designed primers in the RPA assays. The optimal primers/probe combination could effectively identify M. tuberculosis with the detection limit of 4·0 copies per μl, as it could not show a positive signal for the genomic DNA from other mycobacteria or pathogens. The Ag85B-based RPA could determine the genomic DNA extracted from M. tuberculosis with high reliability (100%, 22/22). More importantly, when testing clinical sputum samples, the real-time RPA displayed an admirable sensitivity (90%, 95% CI: 80·0-96·0%) and specificity (98%, 95% CI: 89·0-100·0%) compared to traditional smear microscopy, which was similar to the assay of Xpert MTB/RIF. This real-time RPA based Ag85B provides a promising strategy for the rapid and universal diagnosis of TB.
CITATION STYLE
Xu, Y., Wu, P., Zhang, H., & Li, J. (2021). Rapid detection of Mycobacterium tuberculosis based on antigen 85B via real-time recombinase polymerase amplification. Letters in Applied Microbiology, 72(2), 106–112. https://doi.org/10.1111/lam.13364
Mendeley helps you to discover research relevant for your work.