Context: The persistent spread of highly contagious COVID-19 disease is one of the deadliest occurrences in the history of mankind. Despite the distribution of numerous efficacious vaccines and their extensive usage, the perpetual effectiveness of immunization is being catechized. Therefore, discovering an alternative therapy to control and prevent COVID-19 infections has become a top priority. The main protease (Mpro) plays a key role in viral replication, making it an intriguing pharmacological target for SARS-CoV-2. Methods: In this context, virtual screening of thirteen bioactive polyphenols and terpenoids of Rosmarinus officinalis L. was performed using several computational modules including molecular docking, ADMET, drug-likeness characteristics, and molecular dynamic simulation to predict the potential inhibitors against SARS-CoV-2 Mpro (PDB: 6LU7). The results suggest that apigenin, betulinic acid, luteolin, carnosol, and rosmarinic acid may emerge as potential inhibitors of SARS-CoV-2 with acceptable drug-likeness, pharmacokinetics, ADMET characteristics, and binding interactions comparable with remdesivir and favipiravir. These findings imply that some of the active components of Rosmarinus officinalis L. can serve as an effective antiviral source for the development of therapeutics for SARS-CoV-2 infection.
CITATION STYLE
Patel, U., Desai, K., Dabhi, R. C., Maru, J. J., & Shrivastav, P. S. (2023). Bioprospecting phytochemicals of Rosmarinus officinalis L. for targeting SARS-CoV-2 main protease (Mpro): a computational study. Journal of Molecular Modeling, 29(5). https://doi.org/10.1007/s00894-023-05569-6
Mendeley helps you to discover research relevant for your work.