High-gamma mirror activity patterns in the human brain during reach-to-grasp movement observation, retention, and execution—An MEG study

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

While the existence of a human mirror neuron system is evident, the involved brain areas and their exact functional roles remain under scientific debate. A number of functionally different mirror neuron types, neurons that selectively respond to specific grasp phases and types for example, have been reported with single cell recordings in monkeys. In humans, spatially limited, intracranially recorded electrophysiological signals in the high-gamma (HG) range have been used to investigate the human mirror system, as they are associated with spiking activity in single neurons. Our goal here is to complement previous intracranial HG studies by using magnetoencephalography to record HG activity simultaneously from the whole head. Participants performed a natural reach-to-grasp movement observation and delayed imitation task with different everyday objects and grasp types. This allowed us to characterize the spatial organization of cortical areas that show HG-activation modulation during movement observation (mirroring), retention (mnemonic mirroring), and execution (motor control). Our results show mirroring related HG modulation patterns over bilateral occipito-parietal as well as sensorimotor areas. In addition, we found mnemonic mirroring related HG modulation over contra-lateral fronto-temporal areas. These results provide a foundation for further human mirror system research as well as possible target areas for brain-computer interface and neurorehabilitation approaches.

Cite

CITATION STYLE

APA

Dreyer, A. M., & Rieger, J. W. (2021). High-gamma mirror activity patterns in the human brain during reach-to-grasp movement observation, retention, and execution—An MEG study. PLoS ONE, 16(12 December). https://doi.org/10.1371/journal.pone.0260304

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free