The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.
CITATION STYLE
Melani, R. D., Nogueira, F. C. S., & Domont, G. B. (2017, October 18). It is time for top-down venomics. Journal of Venomous Animals and Toxins Including Tropical Diseases. BioMed Central Ltd. https://doi.org/10.1186/s40409-017-0135-6
Mendeley helps you to discover research relevant for your work.