The song system, a neural network that mediates the learning and production of song by oscine songbirds, is investigated extensively as a model system for understanding the neural basis of complex skill learning. Part of the complexity of birdsong arises from the coordinated recruitment of multiple groups of muscles on both sides of the body. Although the song system is bilaterally organized, little is known about how premotor activities on the two sides are coordinated during singing. We investigated this by unilaterally recording neural activity in the forebrain song nucleus HVc (also known as the high vocal center) during singing and by forcing the premotor activities in the two hemispheres out of synchrony by perturbing neural activity in the contralateral HVc with electrical stimulation. Perturbing the activity in one HVc at any time during a song led to a short- latency readjustment of activity in the contralateral HVc. This readjustment consisted of a true resetting of the temporal pattern of activity in the contralateral HVc rather than merely a transient activity suppression overlaid on an unaltered pattern of premotor activity. These results strongly suggest that the output of song premotor areas in the forebrain is continuously monitored and that an active mechanism exists for resynchronizing the outputs from the two hemispheres whenever their gross temporal patterns differ significantly. The possible anatomical substrates for these coordinating mechanisms and their potential roles in song learning are discussed.
CITATION STYLE
Vu, E. T., Schmidt, M. F., & Mazurek, M. E. (1998). Interhemispheric coordination of premotor neural activity during singing in adult zebra finches. Journal of Neuroscience, 18(21), 9088–9098. https://doi.org/10.1523/jneurosci.18-21-09088.1998
Mendeley helps you to discover research relevant for your work.