Evaluating the drought-monitoring utility of four satellite-based quantitative precipitation estimation products at global scale

29Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

Abstract

This study simultaneously analyzed and evaluated the meteorological drought-monitoring utility of the following four satellite-based, quantitative precipitation estimation (QPE) products: the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis 3B43V7 (TRMM-3B43), the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the Climate Prediction Center Morphing Technique gauge-satellite blended product (CMORPH-BLD), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). Data from 2000 to 2016 was used at global scale. The global Climate Research Unit (CRU)Version 4.02 was used as reference data to assess QPE products. The Standardized Precipitation Evapotranspiration Index (SPEI) drought index was chosen as an example to evaluate the drought utility of four QPE products. The results indicate that CHIRPS has the best performance in Europe, Oceania, and Africa; the PERSIANN-CDR has the best performance in North America, South America, and Asia; the CMORPH-BLD has the worst statistical indices in all continents. Although four QPE products showed satisfactory performance for most of the world according to SPEI statistics, poor drought monitoring ability occurred in Southeast Asia, Central Africa, the Tibetan plateau, the Himalayas, and Amazonia. The PERSIANN-CDR achieves the best performance of the four QPE products in most regions except for Africa; CHIRPS and TRMM-3B43 have comparable performances. According to the spatial probability of detection (POD) and false alarm ratio (FAR) of the SPEI, more than 50% of all drought events cannot be accurately identified by QPE products in regions with sparse gauge distribution. In other regions, such as the southeastern USA, southeastern China, and South Africa, QPE products capture more than 75% of drought events. Temporally, all datasets (except for CMORPH-BLD) can detect all typical drought events, namely, in the southeastern US in 2007, western Europe in 2003, Kenya in 2006, and Central Asia in 2008. The study concludes that CHIRPS and TRMM-3B43 can be used as near-real-time drought monitoring techniques whereas PERSIANN-CDR might be more suitable for long-term historical drought analysis.

Cite

CITATION STYLE

APA

Zhao, H., & Ma, Y. (2019). Evaluating the drought-monitoring utility of four satellite-based quantitative precipitation estimation products at global scale. Remote Sensing, 11(17). https://doi.org/10.3390/rs11172010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free