The aim of this research is to investigate the energy sustainability of cross-laminated timber (CLT) and straw residential buildings in the Cold and Severe Cold Regions of China. In the study, three building materials, namely reinforced concrete (RC), CLT, and straw bale, are used separately to design the building envelope in reference residential buildings in different climate zones. The energy consumption during the operation phase of these buildings is then simulated using Integrated Environmental Solutions-Virtual Environment software (IES-VE). The results show that both CLT and straw buildings are more efficient than reinforced concrete with a reduction in energy consumption during the operational phase. Overall, the calculated heating energy-saving ratios for CLT buildings in Hailar, Harbin, Urumchi, Lanzhou, and Beijing are 3.04%, 7.39%, 7.43%, 12.69%, and 13.41%, respectively, when compared with RC. The calculated energy-saving ratios for heating in straw buildings in comparison with RC in these cities are 8.04%, 22.09%, 22.17%, 33.02%, and 34.28%, respectively. The results also reveal that a south orientation of the main building facade results in approximately 5% to 7% energy reduction in comparison with east or west orientations, and as the building height increases, energy consumption decreases gradually. Although RC is the most frequently used building material in Cold and Severe Cold regions in China, as bio-based building materials, there is great potential to promote CLT and straw bale construction in view of the energy sustainability features.
CITATION STYLE
Guo, H., Zhou, S., Qin, T., Huang, L., Song, W., & Yin, X. (2020). Energy sustainability of bio-based building materials in the cold and severe cold regions of China-A case study of residential buildings. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051582
Mendeley helps you to discover research relevant for your work.