Fruit and vegetable inspection aids robotic harvesting in modern agricultural production. For rapid and accurate detection of fresh shiitake mushrooms, picking robots must overcome the complex conditions of the growing environment, diverse morphology, dense shading, and changing field of view. The current work focuses on improving inspection accuracy at the expense of timeliness. This paper proposes a lightweight shiitake mushroom detection model called Mushroom You Only Look Once (MYOLO) based on You Only Look Once (YOLO) v3. To reduce the complexity of the network structure and computation and improve real-time detection, a lightweight GhostNet16 was built instead of DarkNet53 as the backbone network. Spatial pyramid pooling was introduced at the end of the backbone network to achieve multiscale local feature fusion and improve the detection accuracy. Furthermore, a neck network called shuffle adaptive spatial feature pyramid network (ASA-FPN) was designed to improve fresh shiitake mushroom detection, including that of densely shaded mushrooms, as well as the localization accuracy. Finally, the Complete Intersection over Union (CIoU) loss function was used to optimize the model and improve its convergence efficiency. MYOLO achieved a mean average precision (mAP) of 97.03%, 29.8M parameters, and a detection speed of 19.78 ms, showing excellent timeliness and detectability with a 2.04% higher mAP and 2.08 times fewer parameters than the original model. Thus, it provides an important theoretical basis for automatic picking of fresh shiitake mushrooms.
CITATION STYLE
Cong, P., Feng, H., Lv, K., Zhou, J., & Li, S. (2023). MYOLO: A Lightweight Fresh Shiitake Mushroom Detection Model Based on YOLOv3. Agriculture (Switzerland), 13(2). https://doi.org/10.3390/agriculture13020392
Mendeley helps you to discover research relevant for your work.