Background: Inhibitors of cyclooxygenase-2 alleviate pain and reduce fever and inflammation by suppressing the biosynthesis of prostacyclin (PGI2) and prostaglandin E2. However, suppression of these prostaglandins, particularly PGI2, by cyclooxygenase-2 inhibition or deletion of its I prostanoid receptor also predisposes to accelerated atherogenesis and thrombosis in mice. By contrast, deletion of microsomal prostaglandin E synthase 1 (mPGES-1) confers analgesia, attenuates atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2, but increasing biosynthesis of PGI2. Methods: To address the cardioprotective contribution of PGI2, we generated mice lacking the I prostanoid receptor together with mPges-1 on a hyperlipidemic background (low-density lipoprotein receptor knockouts). Results: mPges-1 depletion modestly increased thrombogenesis, but this response was markedly further augmented by coincident deletion of the I prostanoid receptor (n=10-18). By contrast, deletion of the I prostanoid receptor had no effect on the attenuation of atherogenesis by mPGES-1 deletion in the low-density lipoprotein receptor knockout mice (n=17-21). Conclusions: Although suppression of prostaglandin E2 accounts for the protective effect of mPGES-1 deletion in atherosclerosis, augmentation of PGI2 is the dominant contributor to its favorable thrombogenic profile. The divergent effects on these prostaglandins suggest that inhibitors of mPGES-1 may be less likely to cause cardiovascular adverse effects than nonsteroidal anti-inflammatory drugs specific for inhibition of cyclooxygenase-2.
CITATION STYLE
Tang, S. Y., Monslow, J., Grant, G. R., Todd, L., Pawelzik, S. C., Chen, L., … Fitzgerald, G. A. (2016). Cardiovascular Consequences of Prostanoid i Receptor Deletion in Microsomal Prostaglandin e Synthase-1-Deficient Hyperlipidemic Mice. Circulation, 134(4), 328–338. https://doi.org/10.1161/CIRCULATIONAHA.116.022308
Mendeley helps you to discover research relevant for your work.