The Role of Soil Beneficial Bacteria in Wheat Production: A Review

  • Çakmakçı R
  • Turan M
  • Kıtır N
  • et al.
N/ACitations
Citations of this article
56Readers
Mendeley users who have this article in their library.

Abstract

The factors that govern assembly of the gut microbiota are insufficiently understood. Here, we test the hypothesis that inter-individual microbiota variation can arise solely from differences in the order and timing by which the gut is colonized early in life. Experiments in which mice were inoculated in sequence either with two complex seed communities or a cocktail of four bacterial strains and a seed community revealed that colonization order influenced both the outcome of community assembly and the ecological success of individual colonizers. Historical contingency and priority effects also occurred in Rag1-/- mice, suggesting that the adaptive immune system is not a major contributor to these processes. In conclusion, this study established a measurable effect of colonization history on gut microbiota assembly in a model in which host and environmental factors were strictly controlled, illuminating a potential cause for the high levels of unexplained individuality in host-associated microbial communities.The microbial community living in the gastrointestinal tract of humans, also known as the gut microbiome, is essential for health. Disturbances of this community can lead to chronic diseases. Each person has a unique and stable community of gut microbes that is as personal as a ‘fingerprint’. Studies have shown that an individual’s genetics, diet, environment, lifestyle, and physiological state all make small contributions to the variation of the gut microbiome among individuals. However, less than 30% of this variation can be explained, and even identical twins, who share the same genetics and often diets and lifestyle, have distinct gut microbiomes. This suggests that other unknown factors likely shape these microbial communities too.The microbial communities and the gut make up an ecosystem that is likely subject to many of the same ecological rules that govern ecosystems like rainforests or coral reefs. Yet many studies have overlooked the role of ecology in shaping the gut microbiota. For example, it is well known that the order in which organisms arrive in a community may influence how they interact and assemble into communities. It is possible that the order bacteria are introduced into the gastrointestinal tract of babies early in life may also change the make up of their gut microbiome, and thus introduce the variation that is currently unaccounted for.Now, Martínez et al. show that the first types of bacteria to colonize the gut of mice have a lasting impact on their microbiome. In the experiments, genetically identical mice were housed under exactly the same conditions in airtight plastic bubbles. This allowed the scientists to control when the young mice first encountered specific microbes and microbe communities. Distinct microbial communities collected from different adult mice were introduced into the gastrointestinal tract of the young mice in sequence. Martínez et al. found that the microbes they introduced into the young mice first had the strongest influence on their gut microbiome at the end of the experiments.When the experiments were repeated with a cocktail of four different bacteria the results were similar – the earlier arrivals showed enhanced colonization and had the biggest influence on the microbe community. This suggests that the timing of bacterial arrival in the gut is very important to shape the gut microbiome. Since it is highly random and unpredictable in real-life, and likely to differ even among twins, it could explain why the gut microbiome can be so unique. More studies are needed to understand how antibiotics, formula feeding, or cesarean sections affect gut microbiota early in life, and consequently health. This may help scientists develop better ways to influence the microbiota to improve health, for example, by introducing beneficial microbes early in life.

Cite

CITATION STYLE

APA

Çakmakçı, R., Turan, M., Kıtır, N., Güneş, A., Nikerel, E., Özdemir, B. S., … Mokhtari, N. E. P. (2017). The Role of Soil Beneficial Bacteria in Wheat Production: A Review. In Wheat Improvement, Management and Utilization. InTech. https://doi.org/10.5772/67274

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free