The Internet of Bio-Nano Things (IoBNT) is a transformative communication framework characterized by heterogeneous networks comprising both biological entities and artificial micro/nano-scale devices, so-called Bio-Nano Things (BNTs), interfaced with conventional communication networks for enabling innovative biomedical and environmental applications. Realizing the potential of IoBNT requires the development of new and unconventional communication technologies, such as molecular communications, as well as the corresponding transceivers, bio-cyber interfacing technologies connecting the biochemical domain of IoBNT to the electromagnetic domain of conventional networks, and miniaturized energy harvesting and storage components for the continuous power supply to BNTs. Graphene and related materials (GRMs) exhibit exceptional electrical, optical, biochemical, and mechanical properties, rendering them ideal candidates for addressing the challenges posed by IoBNT. This perspective article highlights recent advancements in GRM-based device technologies that are promising for implementing the core components of IoBNT. By identifying the unique opportunities afforded by GRMs and aligning them with the practical challenges associated with IoBNT, particularly in the materials domain, our aim is to accelerate the transition of envisaged IoBNT applications from theoretical concepts to practical implementations while also uncovering new application areas for GRMs.
CITATION STYLE
Civas, M., Kuscu, M., Cetinkaya, O., Ortlek, B. E., & Akan, O. B. (2023). Graphene and related materials for the Internet of Bio-Nano Things. APL Materials, 11(8). https://doi.org/10.1063/5.0153423
Mendeley helps you to discover research relevant for your work.