Although medications and psychotherapy are often effective for the treatment of posttraumatic stress disorder (PTSD), 20-30% of patients do not respond to these conventional therapies. In psychiatry, DBS has been either approved or is currently under investigation for different disorders. At present, whether DBS may be used to treat PTSD remains unknown. Preclinical research may provide the scientific rationale for helping conceive and further improve such trials. Some of the animal models commonly used to date are more suitable for investigating mechanisms of anxiety and fear than the long-lasting behavior that characterized PTSD. That said, mechanisms and neurocircuits involved in paradigms such as fear conditioning and extinction share several common features with those of PTSD. In this article, we review preclinical studies in which electrical stimulation has been delivered to animal models of PTSD-like behavior. In those studies, commonly targeted regions were the basolateral amygdala, ventral striatum, hippocampus, and prefrontal cortex. Overall, stimulation delivered at high frequencies to most of these targets improved fear extinction and anxiety-like behavior. Though further research is certainly needed, promising findings from DBS studies in animals are encouraging and suggest a positive future perspective for the field.
CITATION STYLE
Reznikov, R., Binko, M., Nobrega, J. N., & Hamani, C. (2016, November 1). Deep brain stimulation in animal models of fear, anxiety, and posttraumatic stress disorder. Neuropsychopharmacology. Nature Publishing Group. https://doi.org/10.1038/npp.2016.34
Mendeley helps you to discover research relevant for your work.