Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms

33Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Learning embeddings of entities and relations using neural architectures is an effective method of performing statistical learning on large-scale relational data, such as knowledge graphs. In this paper, we consider the problem of regularizing the training of neural knowledge graph embeddings by leveraging external background knowledge. We propose a principled and scalable method for leveraging equivalence and inversion axioms during the learning process, by imposing a set of model-dependent soft constraints on the predicate embeddings. The method has several advantages: (i) the number of introduced constraints does not depend on the number of entities in the knowledge base; (ii) regularities in the embedding space effectively reflect available background knowledge; (iii) it yields more accurate results in link prediction tasks over non-regularized methods; and (iv) it can be adapted to a variety of models, without affecting their scalability properties. We demonstrate the effectiveness of the proposed method on several large knowledge graphs. Our evaluation shows that it consistently improves the predictive accuracy of several neural knowledge graph embedding models (for instance, the MRR of TransE on WordNet increases by 11%) without compromising their scalability properties.

Cite

CITATION STYLE

APA

Minervini, P., Costabello, L., Muñoz, E., Nováček, V., & Vandenbussche, P. Y. (2017). Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10534 LNAI, pp. 668–683). Springer Verlag. https://doi.org/10.1007/978-3-319-71249-9_40

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free