Principal Points and Self-Consistent Points of Elliptical Distributions

  • Tarpey T
  • Li L
  • Flury B
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The $k$ principal points of a $p$-variate random vector $\mathbf{X}$ are those points $\xi_1, \ldots, \xi_k \in \mathbb{R}^p$ which approximate the distribution of $\mathbf{X}$ by minimizing the expected squared distance of $\mathbf{X}$ from the nearest of the $\xi_j$. Any set of $k$ points $\mathbf{y}_1, \ldots, \mathbf{y}_k$ partitions $\mathbb{R}^p$ into "domains of attraction" $D_1, \ldots, D_k$ according to minimal distance; following Hastie and Stuetzle we call $\mathbf{y}_1, \ldots, \mathbf{y}_k$ self-consistent if $E\lbrack\mathbf{X}\mid\mathbf{X} \in D_j\rbrack = \mathbf{y}_j$ for $j = 1, \ldots, k$. Principal points are a special case of self-consistent points. In this paper we study principal points and self-consistent points of $p$-variate elliptical distributions. The main results are the following: (1) If $k$ self-consistent points of $\mathbf{X}$ span a subspace of dimension $q < p$, then this subspace is also spanned by $q$ principal components, that is, self-consistent points of elliptical distributions exist only in principal component subspaces. (2) The subspace spanned by $k$ principal points of $\mathbf{X}$ is identical with the subspace spanned by the principal components associated with the largest roots. This proves a conjecture of Flury. We also discuss implications of our results for the computation and estimation of principal points.

Cite

CITATION STYLE

APA

Tarpey, T., Li, L., & Flury, B. D. (2007). Principal Points and Self-Consistent Points of Elliptical Distributions. The Annals of Statistics, 23(1). https://doi.org/10.1214/aos/1176324457

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free