Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations

10Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a serious global public health threat. The evolving strains of SARS-CoV-2 have reduced the effectiveness of vaccines. Therefore, antiviral drugs against SARS-CoV-2 are urgently needed. The main protease (Mpro) of SARS-CoV-2 is an extremely potent target due to its pivotal role in virus replication and low susceptibility to mutation. In the present study, a quantitative structure–activity relationship (QSAR) study was performed to design new molecules that might have higher inhibitory activity against SARS-CoV-2 Mpro. In this context, a set of 55 dihydrophenanthrene derivatives was used to build two 2D-QSAR models using the Monte Carlo optimization method and the Genetic Algorithm Multi-Linear Regression (GA-MLR) method. From the CORAL QSAR model outputs, the promoters responsible for the increase/decrease in inhibitory activity were extracted and interpreted. The promoters responsible for an increase in activity were added to the lead compound to design new molecules. The GA-MLR QSAR model was used to ensure the inhibitory activity of the designed molecules. For further validation, the designed molecules were subjected to molecular docking analysis and molecular dynamics simulations along with an absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis. The results of this study suggest that the newly designed molecules have the potential to be developed as effective drugs against SARS-CoV-2.

Cite

CITATION STYLE

APA

Oubahmane, M., Hdoufane, I., Delaite, C., Sayede, A., Cherqaoui, D., & El Allali, A. (2023). Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations. Pharmaceuticals, 16(4). https://doi.org/10.3390/ph16040608

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free