Synthetic time reversal (STR) is a technique for blind deconvolution in an unknown multipath environment that relies on generic features (rays or modes) of multipath sound propagation. This paper describes how ray-based STR signal estimates may be improved and how ray-based STR sound-channel impulse-response estimates may be exploited for approximate source localization in underwater environments. Findings are based on simulations and underwater experiments involving source-array ranges from 100 m to 1 km in 60 -m-deep water and chirp signals with a bandwidth of 1.5–4.0 kHz. Signal estimation performance is quantified by the correlation coefficient between the source-broadcast and the STR-estimated signals for a variable number N of array elements, 2 ≤ N ≤ 32, and a range of signal-to-noise ratio (SNR), −5 dB ≤ SNR ≤ 30 dB. At high SNR, STR-estimated signals are found to have cross-correlation coefficients of ∼90% with as few as four array elements, and similar performance may be achieved at a SNR of nearly 0 dB with 32 array elements. When the broadband STR-estimated impulse response is used for source localization via a simple ray-based backpropagation scheme, the results are less ambiguous than those obtained from conventional broadband matched field processing.
CITATION STYLE
Abadi, S. H., Rouseff, D., & Dowling, D. R. (2012). Blind deconvolution for robust signal estimation and approximate source localization. The Journal of the Acoustical Society of America, 131(4), 2599–2610. https://doi.org/10.1121/1.3688502
Mendeley helps you to discover research relevant for your work.