Blood serum and plasma are arguably the most commonly analyzed clinical samples, with dozens of proteins serving as validated biomarkers for various human diseases. Top-down proteomics may provide additional insights into disease etiopathogenesis since this approach focuses on protein forms, or proteoforms, originally circulating in blood, potentially providing access to information about relevant post-translational modifications, truncations, single amino acid substitutions, and many other sources of protein variation. However, the vast majority of proteomic studies on serum and plasma are carried out using peptide-centric, bottom-up approaches that cannot recapitulate the original proteoform content of samples. Clinical laboratories have been slow to adopt top-down analysis, also due to higher sample handling requirements. In this study, we describe a straightforward protocol for intact proteoform sample preparation based on the depletion of albumin and immunoglobulins, followed by simplified protein fractionation via polyacrylamide gel electrophoresis. After molecular weight-based fractionation, we supplemented the traditional liquid chromatography-tandem mass spectrometry (LC-MS2) data acquisition with high-field asymmetric waveform ion mobility spectrometry (FAIMS) to further simplify serum proteoform mixtures. This LC-FAIMS-MS2 method led to the identification of over 1000 serum proteoforms < 30 kDa, outperforming traditional LC-MS2 data acquisition and more than doubling the number of proteoforms identified in previous studies.
CITATION STYLE
Kline, J. T., Belford, M. W., Boeser, C. L., Huguet, R., Fellers, R. T., Greer, J. B., … Fornelli, L. (2023). Orbitrap Mass Spectrometry and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Enable the in-Depth Analysis of Human Serum Proteoforms. Journal of Proteome Research, 22(11), 3418–3426. https://doi.org/10.1021/acs.jproteome.3c00488
Mendeley helps you to discover research relevant for your work.