Exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles induces biochemical and histopathological pulmonary changes in mice

22Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

The biochemical and histopathological changes induced by the exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles (IONPs-PM) in CD-1 mice lungs were analyzed. After 2, 3, 7 and 14 days following the intravenous injection of IONPs-PM (5 and 15 mg Fe/kg bw), lactate dehydrogenase (LDH) activity, oxidative stress parameters and the expression of Bax, Bcl-2, caspase-3 and TNF- were evaluated in lung tissue. An increase of catalase (CAT) and glutathione reductase (GR) activities on the second day followed by a decrease on the seventh day, as well as a decline of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity on the third and seventh day were observed in treated groups vs. controls. However, all these enzymatic activities almost fully recovered on the 14th day. The reduced glutathione (GSH) and protein thiols levels decreased significantly in nanoparticles-treated groups and remained diminished during the entire experimental period; by contrast malondialdehyde (MDA) and protein carbonyls increased between the 3rd and 14th day of treatment vs. control. Relevant histopathological modifications were highlighted using Hematoxylin and Eosin (H&E) staining. In addition, major changes in the expression of apoptosis markers were observed in the first week, more pronounced for the higher dose. The injected IONPs-PM generated a dose-dependent decrease of the mouse lung capacity, which counteracted oxidative stress, thus creating circumstances for morphopathological lesions and oxidation processes.

Cite

CITATION STYLE

APA

Balas, M. R., Din Popescu, I. M., Hermenean, A., Cinteză, O. L., Burlacu, R., Ardelean, A., & Dinischiotu, A. (2015). Exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles induces biochemical and histopathological pulmonary changes in mice. International Journal of Molecular Sciences, 16(12), 29417–29435. https://doi.org/10.3390/ijms161226173

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free