In leghorn chickens (Gallus gallus domesticus) of standard breed (large) and bantam (small) varieties, artificial selection has led to females being permanently gravid and sexual selection has led to male-biased size dimorphism. Using respirometry, videography and morphological measurements, sex and variety differences in metabolic cost of locomotion, gait utilisation and maximum sustainable speed (Umax ) were investigated during treadmill locomotion. Males were capable of greater Umax than females and used a grounded running gait at high speeds, which was only observed in a few bantam females and no standard breed females. Body mass accounted for variation in the incremental increase in metabolic power with speed between the varieties, but not the sexes. For the first time in an avian species, a greater mass-specific incremental cost of locomotion, and minimum measured cost of transport (CoTmin ) were found in males than in females. Furthermore, in both varieties, the female CoTmin was lower than predicted from interspecific allometry. Even when compared at equivalent speeds (using Froude number), CoT decreased more rapidly in females than in males. These trends were common to both varieties despite a more upright limb in females than in males in the standard breed, and a lack of dimorphism in posture in the bantam variety. Females may possess compensatory adaptations for metabolic efficiency during gravidity (e.g. in muscle specialization/posture/kinematics). Furthermore, the elevated power at faster speeds in males may be linked to their muscle properties being suited to inter-male aggressive combat.
CITATION STYLE
Rose, K. A., Nudds, R. L., Butler, P. J., & Codd, J. R. (2015). Sex differences in gait utilization and energy metabolism during terrestrial locomotion in two varieties of chicken (Gallus gallus domesticus) selected for different body size. Biology Open, 4(10), 1306–1315. https://doi.org/10.1242/bio.013094
Mendeley helps you to discover research relevant for your work.