US/MR Bimodal Imaging-Guided Bio-Targeting Synergistic Agent for Tumor Therapy

11Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose: Breast cancer is detrimental to the health of women due to the difficulty of early diagnosis and unsatisfactory therapeutic efficacy of available breast cancer therapies. High intensity focused ultrasound (HIFU) ablation is a new method for the treatment of breast tumors, but there is a problem of low ablation efficiency. Therefore, the improvement of HIFU efficiency to combat breast cancer is immediately needed. This study aimed to describe a novel anaerobic bacteria-mediated nanoplatform, comprising synergistic HIFU therapy for breast cancer under guidance of ultrasound (US) and magnetic resonance (MR) bimodal imaging. Methods: The PFH@CL/Fe3O4 nanoparticles (NPs) (Perfluorohexane (PFH) and superparamagnetic iron oxides (SPIO, Fe3 O4) with cationic lipid (CL) NPs) were synthesized using the thin membrane hydration method. The novel nanoplatform Bifidobacterium bifidum-mediated PFH@CL/Fe3O4 NPs were constructed by electrostatic adsorption. Thereafter, US and MR bimodal imaging ability of B. bifidum-mediated PFH@CL/Fe3O4 NPs was evaluated in vitro and in vivo. Finally, the efficacy of HIFU ablation based on B. bifidum-PFH@CL/Fe3O4 NPs was studied. Results: B. bifidum combined with PFH@CL/Fe3 O4 NPs by electrostatic adsorption and enhanced the tumor targeting ability of PFH@CL/Fe3 O4 NPs. US and MR bimodal imaging clearly displayed the distribution of the bio-targeting nanoplatform in vivo. It was conducive for accurate and effective guidance of HIFU synergistic treatment of tumors. Furthermore, PFH@CL/Fe3 O4 NPs could form microbubbles by acoustic droplet evaporation and promote efficiency of HIFU ablation under guidance of bimodal imaging. Conclusion: A bio-targeting nanoplatform with high stability and good physicochemical properties was constructed. The HIFU synergistic agent achieved early precision imaging of tumors and promoted therapeutic effect, monitored by US and MR bimodal imaging during the treatment process.

Cite

CITATION STYLE

APA

Jiang, F., Wang, L., Tang, Y., Wang, Y., Li, N., Wang, D., … Zou, J. (2022). US/MR Bimodal Imaging-Guided Bio-Targeting Synergistic Agent for Tumor Therapy. International Journal of Nanomedicine, 17, 2943–2960. https://doi.org/10.2147/IJN.S363645

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free