The harmonic angle bending potential is used in many force fields for (bio)molecular simulation. The force associated with this potential is discontinuous at angles close to 180°, which can lead to numeric instabilities. Angle bending of linear groups, such as alkynes or nitriles, or linear molecules, such as carbon dioxide, can be treated by a simple harmonic potential if we describe the fluctuations as a deviation from a reference position of the central atom, the position of which is determined by the flanking atoms. The force constant for the linear angle potential can be derived analytically from the corresponding force constant in the traditional potential. The new potential is tested on the properties of alkynes, nitriles, and carbon dioxide. We find that the angles of the linear groups remain about 2° closer to 180° using the new potential. The bond and angle force constants for carbon dioxide were tuned to reproduce the experimentally determined frequencies. An interesting finding was that simulations of liquid carbon dioxide under pressure with the new flexible model were stable only when explicitly modeling the long-range Lennard-Jones (LJ) interactions due to the very long-range nature of the LJ interactions (>1.7 nm). In the other tested liquids, we find that a Lennard-Jones cutoff of 1.1 nm yields similar results as the particle mesh Ewald algorithm for LJ interactions. Algorithmic factors influencing the stability of liquid simulations are discussed as well. Finally, we demonstrate that the linear angle potential can be used in free energy perturbation calculations.
CITATION STYLE
Van Der Spoel, D., Henschel, H., Van Maaren, P. J., Ghahremanpour, M. M., & Costa, L. T. (2020). A potential for molecular simulation of compounds with linear moieties. Journal of Chemical Physics, 153(8). https://doi.org/10.1063/5.0015184
Mendeley helps you to discover research relevant for your work.