Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood.
CITATION STYLE
Winklbauer, R. (2015). Cell adhesion strength from cortical tension - An integration of concepts. Journal of Cell Science, 128(20), 3687–3693. https://doi.org/10.1242/jcs.174623
Mendeley helps you to discover research relevant for your work.