Metric for estimating congruity between quantum images

23Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

An enhanced quantum-based image fidelity metric, the QIFM metric, is proposed as a tool to assess the "congruity" between two or more quantum images. The often confounding contrariety that distinguishes between classical and quantum information processing makes the widely accepted peak-signal-to-noise-ratio (PSNR) ill-suited for use in the quantum computing framework, whereas the prohibitive cost of the probability-based similarity score makes it imprudent for use as an effective image quality metric. Unlike the aforementioned image quality measures, the proposed QIFM metric is calibrated as a pixel difference-based image quality measure that is sensitive to the intricacies inherent to quantum image processing (QIP). As proposed, the QIFM is configured with in-built non-destructive measurement units that preserve the coherence necessary for quantum computation. This design moderates the cost of executing the QIFM in order to estimate congruity between two or more quantum images. A statistical analysis also shows that our proposed QIFM metric has a better correlation with digital expectation of likeness between images than other available quantum image quality measures. Therefore, the QIFM offers a competent substitute for the PSNR as an image quality measure in the quantum computing framework thereby providing a tool to effectively assess fidelity between images in quantum watermarking, quantum movie aggregation and other applications in QIP.

Cite

CITATION STYLE

APA

Iliyasu, A. M., Yan, F., & Hirota, K. (2016). Metric for estimating congruity between quantum images. Entropy, 18(10). https://doi.org/10.3390/e18100360

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free