In van der Waals heterostructures of 2D transition-metal dichalcogenides (2D TMDCs) electron and hole states are spatially localized in different layers forming long-lived interlayer excitons. Here, the influence of additional electron or hole layers on the electronic properties of a MoS2/WSe2 heterobilayer (HBL), which is a direct bandgap material, is investigated from first principles. Additional layers modify the interlayer hybridization, mostly affecting the quasiparticle energy and real-space extend of hole states at the Γ and electron states at the Q valleys. For a sufficient number of additional layers, the band edges move from K to Q or Γ, respectively. Adding electron layers to the HBL leads to more delocalized K and Q states, while Γ states do not extend much beyond the HBL, even when more hole layers are added. These results suggest a simple and yet powerful way to tune band edges and the real-space extent of the electron and hole wave functions in TMDC heterostructures, potentially affecting strongly the lifetime and dynamics of interlayer excitons.
CITATION STYLE
Ramzan, M. S., Kunstmann, J., & Kuc, A. B. (2021). Tuning Valleys and Wave Functions of van der Waals Heterostructures by Varying the Number of Layers: A First-Principles Study. Small, 17(23). https://doi.org/10.1002/smll.202008153
Mendeley helps you to discover research relevant for your work.