This study reports the identification and initial characterization of the precursors, modified forms, and oligomers of bovine herpesvirus 1 (BHV-1) gI and gE proteins with polyvalent rabbit serum specific for gI or gE. Our experiments used the Colorado strain of BHV-1 and mutant viruses with insertions of the Escherichia coli lacZ gene into the predicted gE and gI reading frames. We also translated the gE and gI open reading frames in vitro and expressed them in uninfected cells using eukaryotic expression vectors. Precursor-product relationships were established by pulse-chase analysis and endoglycosidase H and glycopeptidase F digestions. Like the homologous glycoproteins of herpes simplex virus type 1, pseudorabies virus, and varicella-zoster virus, BHV-1 gI and gE are modified by N-linked glycosylation and associate with each other soon after synthesis, forming a noncovalent complex in infected and transfected cells. An analysis of mutant and wild-type-virus-infected cells and transfected COS cells expressing gE or gI alone suggested that gE-gI complex formation is necessary for efficient processing of the gE precursor to its mature form. One new finding was that unlike the other alphaherpesvirus gI homologs, a fraction of pulse-labeled gI synthesized in BHV-1-infected cells apparently is cleaved into two relatively stable fragments 2 to 4 h after the pulse. Finally, we incubated BHV-1-infected cell extracts with nonimmune mouse, rabbit, horse, pig, and calf sera and found no evidence that gE or gI functioned as Fc receptors as reported for the herpes simplex virus type 1 and varicella-zoster virus homologs.
CITATION STYLE
Whitbeck, J. C., Knapp, A. C., Enquist, L. W., Lawrence, W. C., & Bello, L. J. (1996). Synthesis, processing, and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins. Journal of Virology, 70(11), 7878–7884. https://doi.org/10.1128/jvi.70.11.7878-7884.1996
Mendeley helps you to discover research relevant for your work.