Early-life microbiota exposure restricts myeloid-derived suppressor cell–driven colonic tumorigenesis

24Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Gut microbiota and their metabolites are instrumental in regulating homeostasis at intestinal and extraintestinal sites. However, the complex effects of prenatal and early postnatal microbial exposure on adult health and disease outcomes remain incompletely understood. Here, we showed that mice raised under germ-free conditions until weaning and then transferred to specific pathogen-free (SPF) conditions harbored altered microbiota composition, augmented inflammatory cytokine and chemokine expression, and were hyper-susceptible to colitis-associated tumorigenesis later in adulthood. Increased number and size of colon tumors and intestinal epithelial cell proliferation in recolonized germ-free mice were associated with augmented intratumoral CXCL1, CXCL2, and CXCL5 expression and granulocytic myeloid-derived suppressor cell (G-MDSC) accumulation. Consistent with these findings, CXCR2 neutralization in recolonized germ-free mice completely reversed the exacerbated susceptibility to colitis-associated tumorigenesis. Collectively, our findings highlight a crucial role for early-life microbial exposure in establishing intestinal homeostasis that restrains colon cancer in adulthood.

Cite

CITATION STYLE

APA

Harusato, A., Viennois, E., Etienne-Mesmin, L., Matsuyama, S., Abo, H., Osuka, S., … Denning, T. L. (2019). Early-life microbiota exposure restricts myeloid-derived suppressor cell–driven colonic tumorigenesis. Cancer Immunology Research, 7(4), 544–551. https://doi.org/10.1158/2326-6066.CIR-18-0444

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free