We have compared the effect of increasing optode separation (range 0.7-5.5 cm) on the sensitivity of near infrared spectroscopy (NIRS) to discrete reductions in scalp and cerebral oxygenation in 10 healthy men (mean age 32, range 26-39 yr) using multichannel NIRS. During cerebral oligaemia (a mean reduction in middle cerebral artery flow velocity of 47%) induced by a mean reduction in end-tidal PCO2 of 2.4 kPa, the decrease in oxyhaemoglobin detected by NIRS became significantly greater with increasing optode separation (P < 0.0001). In response to scalp hyperaemia induced by inflation and release of a pneumatic scalp tourniquet, increases in oxyhaemoglobin became significantly smaller with increasing optode separation (P < 0.0002). These results are consistent with theoretical models of the behaviour of NIR light in the adult head and support the concept of using multi-detector NIRS to separate intra- and extracranial NIR signal changes. However, the emitter-detector separation used by currently available cerebral oximeters is not large enough to provide optimal spatial resolution.
CITATION STYLE
Germon, T. J., Evans, P. D., Barnett, N. J., Wall, P., Manara, A. R., & Nelson, R. J. (1999). Cerebral near infrared spectroscopy: Emitter-detector separation must be increased. British Journal of Anaesthesia, 82(6), 831–837. https://doi.org/10.1093/bja/82.6.831
Mendeley helps you to discover research relevant for your work.