A recent study proposed five new RNA virus phyla, two of which, 'Taraviricota' and 'Arctiviricota', were stated to be 'dominant in the oceans'. However, the study's assignments classify 28,353 putative RdRp-containing contigs to known phyla but only 886 (2.8%) to the five proposed new phyla combined. I re-mapped the reads to the contigs, finding that known phyla also account for a large majority (93.8%) of reads according to the study's classifications, and that contigs originally assigned to 'Arctiviricota' accounted for only a tiny fraction (0.01%) of reads from Arctic Ocean samples. Performing my own virus identification and classifications, I found that 99.95 per cent of reads could be assigned to known phyla. The most abundant species was Beihai picorna-like virus 34 (15% of reads), and the most abundant order-like cluster was classified as Picornavirales (45% of reads). Sequences in the claimed new phylum 'Pomiviricota' were placed inside a phylogenetic tree for established order Durnavirales with 100 per cent confidence. Moreover, two contigs assigned to the proposed phylum 'Taraviricota' were found to have high-identity alignments to dinoflagellate proteins, tentatively identifying this group of RdRp-like sequences as deriving from non-viral transcripts. Together, these results comprehensively contradict the claim that new phyla dominate the data.
CITATION STYLE
Edgar, R. (2023). Known phyla dominate the Tara Oceans RNA virome. Virus Evolution, 9(2). https://doi.org/10.1093/ve/vead063
Mendeley helps you to discover research relevant for your work.