Purpose: The aim of the article is to present the technology of the manufacturing of composite materials with aluminum alloys matrix with reinforcement made of titanium skeletons. This paper presents the structure and properties of these composite materials. Design/methodology/approach: Titanium skeletons manufactured by SLS technology for certain mechanical properties and geometrical features, subjected to infiltration of cast aluminium alloys: AlSi12, AlSi7Mg0.3 thereby obtain a composite materials AlSi12/Ti and AlSi7Mg0.3/Ti. Findings: The results of examinations of mechanical properties of aluminium alloys: AlSi12, AlSi7Mg0.3, titanium skeletons and composite materials AlSi12/Ti, AlSi7Mg0.3/Ti, show that the reinforcement of aluminium alloys AlSi12, AlSi7Mg0.3 with porous titanium skeletons has a beneficial effect on the mechanical properties of the composite materials AlSi12/Ti, AlSi7Mg0.3/Ti. Practical implications: The principal aim of modern composite materials with a reinforcement in the form of a porous metallic skeleton they are employed, among others, in the automotive, aviation, machine and space industry as well as in medicine. Originality/value: The use of SLS technology in combination with infiltration technology creates prospects production of composite materials having improved properties and a wide range of applicability.
CITATION STYLE
Dobrzański, L. A., Dobrzańska-Danikiewicz, A., & Achtelik-Franczak, A. (2016). The structure and properties of aluminium alloys matrix composite materials with reinforcement made of titanium skeletons. Archives of Materials Science and Engineering, 80(1), 16–30. https://doi.org/10.5604/18972764.1229614
Mendeley helps you to discover research relevant for your work.