Stellar influence on heavy ion escape from unmagnetized exoplanets

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Planetary habitability is in part determined by the atmospheric evolution of a planet; one key component of such evolution is escape of heavy ions to space. Ion-loss processes are sensitive to the plasma environment of the planet, dictated by the stellar wind and stellar radiation. These conditions are likely to vary from what we observe in our own Solar system when considering a planet in the habitable zone around an M-dwarf. Here, we use a hybrid global plasma model to perform a systematic study of the changing plasma environment and ion escape as a function of stellar input conditions, which are designed to mimic those of potentially habitable planets orbiting M-dwarfs. We begin with a nominal case of a solar wind experienced at Mars today, and incrementally modify the interplanetary magnetic field orientation and strength, dynamic pressure, and Extreme Ultraviolet input. We find that both ion-loss morphology and overall rates vary significantly, and in cases where the stellar wind pressure was increased, the ion loss began to be diffusion or production limited with roughly half of all produced ions being lost. This limit implies that extreme care must be taken when extrapolating loss processes observed in the Solar system to extreme environments.

Cite

CITATION STYLE

APA

Egan, H., Jarvinen, R., & Brain, D. (2019). Stellar influence on heavy ion escape from unmagnetized exoplanets. Monthly Notices of the Royal Astronomical Society, 486(1), 1283–1291. https://doi.org/10.1093/mnras/stz788

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free