On spectral invariance of randomized hessian and covariance matrix adaptation schemes

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We evaluate the performance of several gradient-free variable-metric continuous optimization schemes on a specific set of quadratic functions. We revisit a randomized Hessian approximation scheme (D. Leventhal and A. S. Lewis. Randomized Hessian estimation and directional search, 2011), discuss its theoretical underpinnings, and introduce a novel, numerically stable implementation of the scheme (RH). For comparison we also consider closely related Covariance Matrix Adaptation (CMA) schemes. A key goal of this study is to elucidate the influence of the distribution of eigenvalues of quadratic functions on the convergence properties of the different variable-metric schemes. For this purpose we introduce a class of quadratic functions with parameterizable spectra. Our empirical study shows that (i) the performance of RH methods is less dependent on the spectral distribution than CMA schemes, (ii) that adaptive step size control is more efficient in the RH method than line search, and (iii) that the concept of the evolution path allows a paramount speed-up of CMA schemes on quadratic functions but does not alleviate the overall dependence on the eigenvalue spectrum. The present results may trigger research into the design of novel CMA update schemes with improved spectral invariance. © 2012 Springer-Verlag.

Cite

CITATION STYLE

APA

Stich, S. U., & Müller, C. L. (2012). On spectral invariance of randomized hessian and covariance matrix adaptation schemes. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7491 LNCS, pp. 448–457). https://doi.org/10.1007/978-3-642-32937-1_45

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free