Bioimaging of c2c12 muscle myoblasts using fluorescent carbon quantum dots synthesized from bread

7Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Biocompatible carbon quantum dots (CQDs) have recently attracted increased interest in biomedical imaging owing to their advantageous photoluminescence properties. Numerous precursors of fluorescent CQDs and various fabrication procedures are also reported in the literature. However; the use of concentrated mineral acids and other corrosive chemicals during the fabrication process curtails their biocompatibility and severely limits the utilization of the products in cell bio-imaging. In this study; a facile; fast; and cost-effective synthetic route is employed to fabricate CQDs from a natural organic resource; namely bread; where the use of any toxic chemicals is eliminated. Thus; the novel chemical-free technique facilitated the production of luminescent CQDs that were endowed with low cytotoxicity and; therefore; suitable candidates for bioimaging sensors. The above mentioned amorphous CQDs also exhibited fluorescence over 360–420 nm excitation wavelengths; and with a broad emission range of 360–600 nm. We have also shown that the CQDs were well internalized by muscle myoblasts (C2C12) and differentiated myotubes; the cell lines which have not been reported before.

Cite

CITATION STYLE

APA

Anpalagan, K. K., Karakkat, J. V., Truskewycz, A., Saedi, A. A., Joseph, P., Apostolopoulos, V., … Lai, D. T. H. (2020). Bioimaging of c2c12 muscle myoblasts using fluorescent carbon quantum dots synthesized from bread. Nanomaterials, 10(8), 1–13. https://doi.org/10.3390/nano10081575

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free