Multi-scale modeling of trauma injury

N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We develop a multi-scale high fidelity biomechanical and physiologically-based modeling tools for trauma (ballistic/impact and blast) injury to brain, lung and spinal cord for resuscitation, treatment planning and design of personnel protection. Several approaches have been used to study blast and ballistic/impact injuries. Dummy containing pressure sensors and synthetic phantoms of human organs have been used to study bomb blast and car crashes. Large animals like pigs also have been equipped with pressure sensors exposed to blast waves. But these methods do not anatomically and physiologically biofidelic to humans, do not provide full optimization of body protection design and require animal sacrifice. Anatomy and medical image based high-fidelity computational modeling can be used to analyze injury mechanisms and to optimize the design of body protection. This paper presents novel approach of coupled computational fluid dynamics (CFD) and computational structures dynamics (CSD) to simulate fluid (air, cerebrospinal fluid) solid (cranium, brain tissue) interaction during ballistic/blast impact. We propose a trauma injury simulation pipeline concept staring from anatomy and medical image based high fidelity 3D geometric modeling, extraction of tissue morphology, generation of computational grids, multiscale biomechanical and physiological simulations, and data visualization. © Springer-Verlag Berlin Heidelberg 2006.

Cite

CITATION STYLE

APA

Imielinska, C., Przekwas, A., & Tan, X. G. (2006). Multi-scale modeling of trauma injury. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 3994 LNCS-IV, pp. 822–830). Springer Verlag. https://doi.org/10.1007/11758549_110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free