Variations in the global tropospheric zonal-mean zonal wind [U] during boreal winter are investigated using rotated empirical orthogonal functions applied to monthly means. The first two modes correspond to the northern and southern annular mode and modes 3 and 4 represent variability in the tropics. One is related to El Niño-Southern Oscillation and the other has variability that is highly correlated with the time series of [U] at 150 hPa between 5°N and 5°S [U150]E and is related to activity of the Madden-Julian oscillation. The extratropical response to [U150]E is investigated using linear regressions of 500-hPa geopotential height onto the [U150]E time series. Use is made of reanalysis data and of the ensemble mean output from a relaxation experiment using the European Centre for Medium-Range Weather Forecasts model in which the tropical atmosphere is relaxed toward reanalysis data. The regression analysis reveals that a shift of the Aleutian low and a wave train across the North Atlantic are associated with [U150]E. It is found that the subtropical waveguides and the link between the North Pacific and North Atlantic are stronger during the easterly phase of [U150]E. The wave train over the North Atlantic is associated with Rossby wave sources over the subtropical North Pacific and North America. Finally, it is shown that a linear combination of both [U150]E and the quasi-biennial oscillation in the lower stratosphere can explain the circulation anomalies of the anomalously cold European winter of 1962/63 when both were in an extreme easterly phase.
CITATION STYLE
Gollan, G., & Greatbatch, R. J. (2015). On the extratropical influence of variations of the upper-tropospheric equatorial zonal-mean zonal wind during boreal winter. Journal of Climate, 28(1), 168–185. https://doi.org/10.1175/JCLI-D-14-00185.1
Mendeley helps you to discover research relevant for your work.