Activating mutations of Flt3 are found in approximately one third of patients with acute myeloid leukemia (AML) and are an attractive drug target. Two classes of Flt3 mutations occur: internal tandem duplications (ITDs) in the juxtamembrane and point mutations in the tyrosine kinase domain (TKD). We and others have shown that Flt3-ITD induced aberrant signaling including strong activation of signal transducer and activator of transcription 5 (STAT5) and repression of CCAAT/estradiol-binding protein α (c/EBPα) and Pu.1. Here, we compared the signaling properties of Flt3-ITD versus Flt3-TKD in myeloid progenitor cells. We demonstrate that Flt3-TKD mutations induced autonomous growth of 32D cells in suspension cultures. However, in contrast to Flt3-ITD and similar to wild-type Flt3 (Flt3-WT), Flt3-TKD cannot support colony formation in semisolid media. Also, in contrast to Flt3-ITD, neither Flt3-WT nor Flt3-TKD induced activation or induction of STAT5 target genes. Flt3-TKD also failed to repress c/EBPα and Pu.1. No significant differences were observed in receptor autophosphorylation and the phosphorylation of Erk-1 and -2, Akt, and Shc. Importantly, TKD but not ITD mutations were a log power more sensitive toward the tyrosine kinase inhibitor protein kinase C 412 (PKC412) than Flt3-WT. In conclusion, Flt3-ITD and Flt3-TKD mutations display differences in their signaling properties that could have important implications for their transforming capacity and for the design of mutation-specific therapeutic approaches. © 2005 by The American Society of Hematology.
CITATION STYLE
Choudhary, C., Schwäble, J., Brandts, C., Tickenbrock, L., Sargin, B., Kindler, T., … Serve, H. (2005). AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood, 106(1), 265–273. https://doi.org/10.1182/blood-2004-07-2942
Mendeley helps you to discover research relevant for your work.