We discuss a Cheeger constant as a mixture of the frustration index and the expansion rate, and prove the related Cheeger inequalities and higher order Cheeger inequalities for graph Laplacians with cyclic signatures, discrete magnetic Laplacians on finite graphs and magnetic Laplacians on closed Riemannian manifolds. In this process, we develop spectral clustering algorithms for partially oriented graphs and multi-way spectral clustering algorithms via metrics in lens spaces and complex projective spaces. As a byproduct, we give a unified viewpoint of Harary’s structural balance theory of signed graphs and the gauge invariance of magnetic potentials.
CITATION STYLE
Lange, C., Liu, S., Peyerimhoff, N., & Post, O. (2015). Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians. Calculus of Variations and Partial Differential Equations, 54(4), 4165–4196. https://doi.org/10.1007/s00526-015-0935-x
Mendeley helps you to discover research relevant for your work.