Bayesian estimation on load model coefficients of ZIP and induction motor model

14Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Parameter identification in load models is a critical factor for power system computation, simulation, and prediction, as well as stability and reliability analysis. Conventional point estimation based composite load modeling approaches suffer from disturbances and noises, and provide limited information of the system dynamics. In this work, a statistics (Bayesian Estimation) based distribution estimation approach is proposed for both static and dynamic load models. When dealing with multiple parameters, Gibbs sampling method is employed. The proposed method samples all parameters in each iteration and updates one parameter while others remain fixed. The proposed method provides a distribution estimation for load model coefficients and is robust for measuring errors. The proposed parameter identification approach is generic and can be applied to both transmission and distribution networks. Simulations using a 33-feeder system illustrated the efficiency and robustness of the proposal.

Cite

CITATION STYLE

APA

Li, H., Chen, Q., Fu, C., Yu, Z., Shi, D., & Wang, Z. (2019). Bayesian estimation on load model coefficients of ZIP and induction motor model. Energies, 12(3). https://doi.org/10.3390/en12030547

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free