Benthic marine suspension feeders provide an important link between benthic and pelagic ecosystems. The strength of this link is determined by suspension-feeding rates. Many studies have measured suspension-feeding rates using indirect clearance-rate methods, which are based on the depletion of suspended particles. Direct methods that measure the flow of water itself are less common, but they can be more broadly applied because, unlike indirect methods, direct methods are not affected by properties of the cleared particles. We present pumping rates for three species of suspension feeders, the clams Mya arenaria and Mercenaria mercenaria and the tunicate Ciona intestinalis, measured using a direct method based on particle image velocimetry (PIV). Past uses of PIV in suspensionfeeding studies have been limited by strong laser reflections that interfere with velocity measurements proximate to the siphon. We used a new approach based on fitting PIV-based velocity profile measurements to theoretical profiles from computational fluid dynamic (CFD) models, which allowed us to calculate inhalant siphon Reynolds numbers (Re). We used these inhalant Re and measurements of siphon diameters to calculate exhalant Re, pumping rates, and mean inlet and outlet velocities. For the three species studied, inhalant Re ranged from 8 to 520, and exhalant Re ranged from 15 to 1073. Volumetric pumping rates ranged from 1.7 to 7.4 l h1 for M. arenaria, 0.3 to 3.6 l h1 for M. mercenaria and 0.07 to 0.97 l h1 for C. intestinalis. We also used CFD models based on measured pumping rates to calculate capture regions, which reveal the spatial extent of pumpedwater.Combining PIV data with CFDmodels may be a valuable approach for future suspension-feeding studies.
CITATION STYLE
Du Clos, K. T., Jones, I. T., Carrier, T. J., Brady, D. C., & Jumars, P. A. (2017). Model-assisted measurements of suspension-feeding flow velocities. Journal of Experimental Biology, 220(11), 2096–2107. https://doi.org/10.1242/jeb.147934
Mendeley helps you to discover research relevant for your work.