Sorption potential of rice residues for Hg(II) removal from aqueous solution was investigated. Rice husk (RH) and rice straw (RS) were selected and treated with sodium hydroxide (NaOH). The raw and modified adsorbents were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and BET surface area measurements. The effects of pH, initial ion concentration, and agitation time on the removal process were studied in batch adsorption experiments. Two simple kinetic models, which are pseudo-first-order and pseudo-second-order, were tested to investigate the adsorption mechanisms. The kinetic data fits to pseudo second order model with correlation coefficients greater than 0.99 for all adsorbents. The equilibrium data fitted well with the Langmuir compared to Freundlich isotherm models. Alkali-treated adsorbent obtained larger surface area and RH-NaOH showed highest adsorption capacity followed by RS-Pure > RH-Pure > RS-NaOH. The maximum removal efficiency obtained by RH-NaOH and RS-Pure was 42 mg/l (80%) at pH 6.5 and with 2 days contact time (for 50 mg/l initial concentration and 25 mg adsorbents). © 2013 Penerbit UTM Press. All rights reserved.
CITATION STYLE
Song, S. T., Saman, N., Johari, K., & Mat, H. B. (2013). Removal of mercury (II) from aqueous solution by using rice residues. Jurnal Teknologi (Sciences and Engineering), 63(1), 67–73. https://doi.org/10.11113/jt.v63.1381
Mendeley helps you to discover research relevant for your work.