We study a one parameter family of discrete Loewner evolutions driven by a random walk on the real line. We show that it converges to the stochastic Loewner evolution (SLE) under rescaling. We show that the discrete Loewner evolution satisfies Markovian-type and symmetry properties analogous to SLE, and establish a phase transition property for the discrete Loewner evolution when the parameter equals 4.
CITATION STYLE
Bauer, R. O. (2003). Discrete Löwner evolution. Annales de La Faculté Des Sciences de Toulouse Mathématiques, 12(4), 433–451. https://doi.org/10.5802/afst.1056
Mendeley helps you to discover research relevant for your work.